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Abstract. In this paper, we aim at improving the quality of blurry
retinal images that are caused by ocular diseases. The blurry images
could affect clinical diagnosis for both ophthalmologists and automatic
aided system. Inspired by the great success of generative adversarial net-
works, a data-driven approach is proposed to enhance the blurry images
in a weakly supervised manner. That is to say, instead of paired blurry
and high-quality images, our approach can be trained with two sets of
unpaired images. The advantage of unpaired training setting makes our
approach easily applicable, since the annotated data are very limited
in medical images. Compared with traditional methods, our model is
an end-to-end approach without human designed adjustments or prior
knowledge. However, it achieves a superior performance on blurry images.
Besides, a dynamic retinal image feature constraint is proposed to guide
the generator to improve the performance and avoid over-enhancing the
extremely blurry region. Our approach can work on large image resolu-
tion which makes it widely beneficial to clinic images.

1 Introduction

Retinal imaging is widely used by ophthalmologists for early disease detection
and diagnosis including glaucoma, diabetic retinopathy, hypertensive retinopa-
thy. However, the unsatisfied quality of retinal images such as poor illuminance,
low contrast and blurriness makes it hard to distinguish different diseases and
also decrease the accuracy of diagnosis for doctors [9]. Meanwhile, the poor
quality image leads to an unsatisfied result for automatic image processing (e.g.
segmentation, tracking) which may further influence the analysis of diseases.
Recent years, there are many researchers trying to enhance the retinal images
with low quality. Most of the methods focus on improving illuminance and con-
trast of retinal image using normalization techniques, while little effort is putting
on deblurriness.

In this paper, we propose a novel deep learning approach to enhance the
blurry images. Different from other retinal image enhancement methods with
sophisticated adjustments of parameters, our approach is very straightforward
with an end-to-end framework. We propose a solution of using an image-to-image
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translation pipeline with a two-way GAN that is restricted by feature constraint.
In addition, our approach only requires two sets of unpaired blurry/high-quality
images as inputs, which is applicable in many cases where paired medical images
are rare and not accessible. The contribution of our approach can be summarized
as follows. (1) To the best of our knowledge, our approach is the first end-to-
end deep generative model to enhance the blurry retinal images, which is not
based on prior knowledge and designed adjustment. (2) Our model can learn
the mapping by a weakly supervision manner (i.e. no paired blurry/high quality
images are required), which is appropriate to the situation that paired data are
limited in medical images. (3) The proposed dynamic feature descriptor provides
a feature constraint that helps the model to produce more reliable enhancement
containing the core information and fewer artifacts. (4) Besides, our enhanced
images are helpful on improving the performance of automatic processing, such
as vessel segmentation and tracking.

2 Related Work

Retinal Image Enhancement. Image enhancement has been well studied in
recent years, and various methods are proposed [3,8,10]. They have achieved a
good performance on luminance and contrast enhancement. For medical images,
image enhancement has been explored and methods are focusing on specific
tasks. The histogram based method, contrast limited adaptive histogram equal-
ization (CLAHE), is widely used and applied to improve the poor quality retinal
images. A luminosity and contrast adjustment method is proposed in [13]. The
luminance is enhanced by a luminance gain matrix from gamma correction and
the contrast is enhanced by CLAHE in the Lab color space. This kind of methods
is based on the knowledge of the neighborhood region. In [6], Fourier transfor-
mation is utilized to remove the opacity and CLAHE is used to enhance the
contrast based on HIS color space. The blurriness of retinal images are modelled
using scattering process in [11] and the images are enhanced with estimation of
transmission map and background illuminance. Predefined parameters and prior
knowledge such as enhancing details or region selected are required in the above
models, and this may make their model sensitive.

Generative Adversarial Model. The generative adversarial model that is
designed as a two-player zero-sum game between a discriminator and a gen-
erator [2], has been developed rapidly in the past five years. The generator is
trained to generate samples as similar as the real ones, while the discriminator
is designed to distinguish the generated samples. The model is utilized to gener-
ate realistic images of both natural images [4,14] and medical images [7,12]. For
example, Isola et al. [4] present a general translator to transform image from one
domain to another, which requires the paired training data. Later, Zhu et al. [14]
loose the constraint by introducing a backward mapping from output to input.
Application based on Zhu et al. is also studied to enhance the photos in terms
of color and sharpness with modified model structure and training scheme for
stability [1]. In medical imaging, the adversarial learning is widely used in other
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tasks such as registration, reconstruction and segmentation and have achieved
satisfied results, in which it is applied as an additional constraint.

Fig. 1. Flowchart of our approach focusing on the low-quality to high-quality process.
Blue boxes indicate the generator and discriminator for enhancing process, while green
boxes are for blurring process. Ge and Gb represent enhanced generator and blurred
generator respectively, while De and Db indicate the corresponding discriminators. The
yellow box refers to the dynamic feature descriptor for feature consistent constraint.
x indicates the blurry image, while y refers to the high quality image. (Color figure
online)

3 Method

In this section, we propose a retinal image enhancement model based on the
generative adversarial networks with feature consistent constraint. Denote the
training dataset as {xi , yi}N

i=1, where x ∈ RW×H×3 refers to the blurry images
and y ∈ RW×H×3 is the high quality images. Our goal is to enhance the blurry
image x and produce the enhanced image ŷ to make it as clear as the normal reti-
nal image y. In order to achieve this target, two generative models are employed
Ge : x → y and Gb : y → x. The first generator Ge is used to enhance the image
from low-quality to high-quality and Gb is used for providing a training reference
by converting the high-quality to low-quality. This mechanism forms a feedback
of information and makes the model trainable using a weakly supervised manner,
where the feature descriptor is proposed for a perceptual constraint.

3.1 Model Structure

The flowchart of our approach is displayed in Fig. 1. The two generators Ge

and Gb share the same model structure but with different tasks, while the two
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discriminators De and Db also have the same model structure. The De aims to
distinguish the enhanced images ŷ from the real high quality images y, while
the Db is utilized for checking out whether the input images are blurry images
x or the synthesized ŷ by Gb. Besides the generators and discriminators, we
also introduce a dynamic feature descriptor to extract the feature description of
each image. In practice, the discriminators De and Db are selected as dynamic
feature descriptors for the enhanced images and the blurred images respectively.
The parameters of these two feature descriptors are updated for each training
iteration. In this way, the features designed for describing the real image charac-
teristics become stronger and stronger during training and it’s less computation
expensive for this setting.

Our generator consists of 3 convolutional and deconvolutional layers and a
residual bottleneck module. The input image is passed into the first convolutional
layer with kernel size of 7 × 7 × 64 and stride 1, which is followed by two
downsampling convolutional layers whose kernel sizes are 3 × 3 × 128 and 3 ×
3 × 256 respectively. The deconvolutional layers have the same kernel sizes as the
corresponding convolutional layers. The bottleneck module contains 9 residual
blocks, in which two convolutional layers and one skip connection are employed.
Our discriminator consists of 5 convolutional layers, where the convolutional
kernels with 3 × 3 and stride 2 are applied for 4 times downsampling. The
Patch-GAN [4] is utilized here which classifies whether the image patches are
real or fake instead of the whole image. This setting decreases the number of
parameters and improves the ability of the discriminators.

3.2 Objective Function

The entire enhancement process can be described as Ge(x) : x → ŷ, while a
discriminator function is defined as De : X → d ∈ [0, 1]. When the input X
is the real high quality image y, d should be closed to 1 and when X is the
enhanced image ŷ, d should be closed to 0. Different from the traditional GAN,
another pair of generator Gb and discriminator Db is employed here to train
the model using a weakly supervised manner. We follow the GAN’s idea and
combine the two pairs of G and D, and the optimization problem which needs
to be solved is:

min
Ge,Gb

max
De,Db

L = ωadvLadv + ωCfeaLCfea + +ωidtLidt (1)

where the adversarial loss is Ladv = (De(y)−1)2+De(ŷ)2+(Db(x)−1)2+Db(x̂)2,
with LCfea and Lidt being the feature consistent constraint and identity loss
respectively. Here, we use a least-squares loss [5] to obtain a more stable training
process and better results. These three terms form our final loss function and
will be introduced in the following.

Feature Consistent Constraint. In general, the generator Ge can produce many
“enhanced” outputs if the adversarial loss is the only restriction. In order to make
Ge enhance the blurry images in the direction we expect, the consistent mapping
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function is introduced. The intuition of this restriction is that one blurry image x̂
generated by Gb from y should be converted back by the enhanced function Gb.
Similarly, for each enhanced image ŷ generated by Ge should also satisfy the cycle
consistency, where Gb(ŷ) → x. So the consistent constraint can be defined as:

LC = �Gb(ŷ) − x�1 + �Ge(x̂) − y�1 (2)

where ŷ = Ge(x) and x̂ = Gb(y) indicate the outputs of enhanced and blurry
result respectively. This consistent strategy creates a supervisory signal to train
the enhanced generator Ge and the blurred generator Gb, which somehow makes
this unpaired training task into a “pair-wise” learning. However, due to the
complex background and foreground of retinal images, image-level consistent
constraint is not enough and leads to unsatisfactory artifacts on the enhanced
images. A feature consistent constraint is further proposed to overcome this
issue. In practice, we choose to measure the difference of feature maps coming
from convolutional layers. For specific layer l and the convolutional function F ,
the final feature consistent constraint is defined as:

LCfea =
��F l(Gb(ŷ)) − F l(x)

��
1

+
��F l(Ge(x̂)) − F l(y)

��
1

(3)

Identity Loss. The identity loss is applied to regularize the generator Ge to
produce an identity mapping when a high-quality image y is fed into Ge. The
same operation is also applied to the output of another generator Gb. Then the
final identity loss is defined as:

Lidt = (�Ge(y) − y�1 + �Gb(x) − x�1) (4)

Intuitively, the same image should be obtained when a high-quality image is fed
into the enhanced generator. This additional loss is very helpful to preserve the
color between the input and output by adding a restriction to the generator.
Without the identity loss, the model is free to generate and the enhanced image
ŷ is corrupted with unsatisfied color appearance.

4 Experiment and Results

In practice, we set ωadv = 1, ωCfea = 10, ωidt = 10 as the weights of each
single loss. Empirically, all convolutional layers in discriminator are selected to
computing LCfea. The dataset used for training and testing are from hospitals.
There are 550 blurry images and 550 high quality images used for training and 60
blurry images are used for testing. The blurry images are from cataract patients
and the high quality are from normal people. There are two subsets of testing set.
The first one contains only fifty blurry images, while the second one consists of
ten images with ground-truths. Images of cataract patients are blurry due to the
opacity of lens, and the images after surgery are regarded as ground-truth. To
evaluate our retinal image enhancement performance, we carry out the following
experiments including visual and quantitative evaluation.
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(a) Blurry image (b) Mitra et al.[5] (c) Zhou et al.[14] (d) Xiong et al.[12] (e) Ours

Fig. 2. Visual comparison between our approach and other methods. Two different
image samples are shown in the first and the second rows, while the last row is the
zoom-in views of selected regions.

(a) Blurry image (b) Segmentation 
on blury image

(c) Segmenetation
on enhanced image 

by ours

(d) Vessel tracking 
on blury image

(e) Vessel tracking 
on enhanced image

by ours

Fig. 3. Results of two retinal image processing tasks on blurry and enhanced images.
(a–c) show the segmentation task, while (d–e) display the tracking task.

4.1 Enhancement Evaluation – Visual and Quantitative

In this section, two kinds of image quality assessment are adopted, full-reference
and no-reference evaluation. For no-reference assessment, Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE), Natural Image Quality Evaluator
(NIQE) and Entropy are chosen to assess each enhanced image and its original
blurry retinal image. Fifty blurry images are employed in the no-reference eval-
uation. All these no-reference quality metrics give us an absolute image quality
but not the proximity to a reference. As to full-reference assessment, Signal-to-
Noise Ratio (PSNR) and structural similarity index measure (SSIM) are uti-
lized. SSIM and PSNR give the comparison between the enhanced image and
the ground truth. For this assessment, images of ten cataract patients before
and after cataract surgery are used for evaluation. The quantitative results are
displayed in Table 1. The lower values of BRISQUE and NIQE indicate better
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Table 1. Quantitative comparison between our approach and other methods, where
full-reference and no-reference assessments are included. The lower the score of
BRISQUE and NIQE, the better, while opposite for others.

No-reference Full-reference

BRISQUE NIQE Entropy PSNR SSIM

Mitra et al. [6] 45.16 3.32 6.69 16.38 0.78

Zhou et al. [13] 46.13 4.30 6.74 17.73 0.73

Xiong et al. [11] 43.61 3.87 6.67 17.26 0.87

Ours w/o feature constraint 41.39 2.78 6.67 19.03 0.88

Ours 40.62 2.74 6.89 19.24 0.89

(a) (b) (c)

Fig. 4. Visual comparison between feature-level constraint and image-level constraint
on enhanced retinal images. For each panel, images on the left are outputs from model
with image-level constraint and images on the right are the outputs from model with
feature constraint. (Color figure online)

image quality, while higher entropy scores refer to better quality. Our approach
achieves the best BRISQUE, NIQE and entropy scores which are 40.62, 2.74 and
6.89 respectively. As to the full-reference assessment, our approach still obtains
the highest value of PSNR with 19.24 and SSIM with 0.89. This superior perfor-
mance can also be supported by the visual comparison of enhanced results shown
in Fig. 2, in which three methods (Mitra et al. [6], Zhou et al. [13] and Xiong
et al. [11]) are compared with ours. All these four methods can produce an over-
all good performance and enhance vessels more or less. But the results obtained
by our approach are visually better. Our approach can generate a clean image
with a similar appearance of raw image, while other methods may produce irreg-
ular color appearance. Besides, the boundaries of vessels are sharper than other
methods and the background is cleaner without noises. The results obtained by
the other methods contain more blurred vessels. This is more obvious in the
zoomed-in views of the selected patches.

The enhanced images can benefit other retinal image processing, such as
vessel segmentation or vessel tracking. To demonstrate the improvement, we
conduct experiments on both blurry and enhanced images for different tasks.
Figure 3 displays the results of vessel segmentation and tracking with the same
model for each task. As we can see, more vessels can be segmented out on our
enhanced image, while the wrong vessel tracking will be corrected.
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4.2 Ablation Test on Feature Constraint

To evaluate the performance of our dynamic feature constraint compared with
image-level constraint, we measure the results of these two models separately.
The second last row of Table 1 displays the quantitative results of model without
feature constraint. It’s a bit worse than the final model of our approach both on
no-reference and full-reference assessment. Figure 4 shows the visual comparison
of these two models.

Overall, the results enhanced by image-level constraint are satisfied. How-
ever, the image-level model usually produces artifacts when the area is extremely
unclear (shown with blue boxes in figure), and some parts are not well enhanced
compared with our final model (shown with red boxes in figure). Retinal struc-
tures can hardly be seen on the extreme blurred images, which becomes a barrier
for image-level model to guide the enhanced generator. On the other hand, the
pattern in the feature space can still provide the guidance, this is also the reason
why our proposed feature-level constraint works better than image-level one.

5 Conclusion

We propose a novel deep learning approach to enhance blurry retinal images in
a data-driven fashion. It is trained in a weakly supervised manner without the
requirement of paired data, which is extremely important for medical images
where not much paired data are available. These two advantages (i.e. data-
driven fashion and unpaired data) make our approach flexible and could be
easily used. The proposed approach outperforms the state-of-art retinal image
enhancement methods in both visual and quantitative evaluation. Furthermore,
it can be used to improve the performance of image processing, including retinal
vessel segmentation and tracking. The proposed method can be extend from
retinal images to other medical images.
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